- 期权交易策略与风险管理
- 杨永彬 刘圣根 吴尚炫
- 540字
- 2020-08-27 20:07:41
2.5.1 二叉树模型的特征
二叉树模型的核心在于,假定我们知道从一个阶段到下一个阶段标的资产的变化率(上涨比例或下跌比例)。大部分二叉树模型会假定标的资产的变化率在每个时点都相同。虽然不进行这样的假定二叉树模型也依然有效,但为了计算方便,我们依然假设变化率在每个时点都相同。另外,还会加入(1+PU)×(1-PD)=1这样的假设。重要的是,只需满足0<1-PD<1+r<1+PU这个不等式。核心假设是我们知道下一阶段的基础资产价格,其余的假设不过是为了计算方便附加的。这里再一次回顾前面所提到的一阶二叉树模型的合理价格公式。
由上面的公式我们发现,在公式中并没有体现上涨和下跌的概率。上涨(或下跌)的概率不体现在公式中,意味着期权的合理价格与上涨(或下跌)的概率完全无关。在极端情况下,如果上涨概率为99.999%,下跌概率为0.001%,那么上面的公式依然成立。这在直观上可能比较难以理解和接受,但根据“天下没有免费的午餐”这个极其普通的原理所求的期权合理价格确实与标的资产的上涨(或下跌)的概率无关,仅依赖于上涨(或下跌)的幅度。从交易的角度来说,当标的资产价格上涨概率达到99.999%时,显然会判断价格上升。但通过Delta对冲方法将合理价格和市场价格的偏差转化为收益的交易时,即便只有0.001%的概率上涨(或下跌),想要获得独立于标的资产上涨或下跌的收益也必须进行Delta对冲。