- 期权交易策略与风险管理
- 杨永彬 刘圣根 吴尚炫
- 2553字
- 2020-08-27 20:07:41
2.1 一阶二叉树模型
我们先了解在二叉树模型中最为简单的一阶二叉树模型。我们的最终目的是在既定的条件下求出期权现在(开始时点)的合理价格,然后判断期权价格是被高估还是被低估,因此求期权的合理价格就成为期权交易的基础。合理价格是指交易公平原理下的价格,因此在经济学中一般用“有效市场中不存在无风险套利机会”来表达“天下没有免费的午餐”。
没有无风险套利机会意味着不存在与未来价格变动风险无关的稳定收益机会。因此,如果金融产品以“合理价格”交易就意味着该金融产品处于既没有被高估也没有被低估的公平定价的状态。若产品价格被高估则存在卖出该金融产品将获得确定收益的机会,若产品价格被低估则存在买入该产品将获得稳定收益的机会。
一阶二叉树模型只考虑开始和到期两个时点,即开始交易的时点和交易结束(到期)的时点。期权分为认购(买权)和认沽(卖权)两种类型,此处我们先考虑认购(买权)期权的情形。
认购期权到期的价值由到期时标的资产的价格和认购期权的行权价决定。在这里先做一个假设:假设到期时标的资产价格较标的资产现价上涨40%或下跌40%。到期时标的资产的价格在现实中有上涨、下跌、价格不变三种可能。在本模型中做出了价格只有上涨和下跌两种情况,且提前知道上涨比例和下跌比例这样较为大胆的假设。如此的假设最初会显得很不现实,但以后将一阶二叉树模型推广到多阶二叉树模型,再推广到B-S期权定价模型后,我们会发现这些看似不现实的假设将逐渐符合真实市场环境。假定标的资产当前价格为5000元,认购期权是行权价为5000元的平值期权,且是只能在到期后行权的欧式期权,再假定市场的利率为20%,假设存贷款利率同样为20%。在这个假定下,如果到期时标的资产价格上涨到7000元,则认购期权价值为2000元。如果标的资产价格下跌到3000元,则认购期权价值变为0。
这个情形如图2.1所示。图2.1中左边显示标的资产的现价和到期价格,右边显示尚不知合理价格(C)的当前时点认购期权价格和到期时的期权价值。认购期权到期时的价值在标的资产上涨时为2000(7000-5000=2000)元,在标的资产下跌时为0。如何利用上面给定的条件和“天下没有免费的午餐”这个原理求得认购期权在当前时点的合理价格(C)?我们先来看一看金融产品的种类。
图2.1 一阶二叉树模型
首先,从利率为20%得知,有债券产品,即投资该债券后,无论何种情况都会在到期时得到20%的利率。其次,有股票(标的资产),投资该产品可能在到期时获得40%的收益,也可能出现40%的亏损。最后,有认购期权,投资该期权在到期时的价值为2000元或0,这从直观上能判断该期权现价应为0~2000元的某个值。如果该期权现在以3000元的现价交易,则很显然是被高估的。
适当地利用债券、股票和期权这三个产品,并将它们组成一个无论标的资产价格上涨或下跌都能获得确定收益的投资组合。股票和认购期权的到期价值以相同方向变动,因此可以判断,要想获得与到期状态无关的收益必须要持有股票和与期权相反的头寸。买入股票要卖出认购期权,卖出股票(卖出融券)则要买入认购期权,才能在到期时获得与到期状态无关的确定收益,即标的资产和认购期权的价格要相反。若两个产品都以相同方向买入,则无法获得独立于到期时标的资产价格状态的确定收益。因此,这里我们先选择买入股票、卖出认购期权。
在这种情况下,买入和卖出的股票、期权的数量将变得非常重要。要知道,股票买入量和认购期权卖出量之间存在一定的相关性,如果买入量显著多于与或少于卖出量就无法获得预期的收益。虽然暂时还未知,但两者的比例是非常重要的变量。我们暂且将该变量的名字定义为△,即买入△份的股票,同时卖出1份认购期权合约。这个组合的到期收益根据股票价格的变化分为上涨和下跌两种情形。如果到期后标的资产价格上涨,则到期收益=△×7000-2000。如果到期后标的资产价格下跌,则到期收益=△×3000-0。具体如图2.2所示,即求无论发生任何情况都能得到期权益相同的△值,该值由△×7000-2000=△×3000-0方程得出。
图2.2 到期的价值
由于我们是期权卖出方,因此在该方程中没有认购期权的价格,解该方程得△=0.5,这就意味着买入0.5份股票、卖出1份认购期权后,到期时标的资产价格无论是上涨还是下跌,该组合到期收益都为1500(0.5×7000-2000=0.5×3000=1500)元。当然,在实际交易中我们不能交易0.5份股票,但为了计算方便我们在这里假定允许以小于1的份额进行交易。
至此,我们求出了构建独立于标的资产价格变动风险而提供稳定权益的投资组合所需的股票和认购期权的买入/卖出比例Δ。为了求出最终所要的认购期权的合理价格,我们再一次从“天下没有免费的午餐”这个浅显的道理出发去进行分析。假设当前的投资组合是买入0.5份股票、卖出1份认购期权,且该组合在到期时总是拥有1500元的价值。在金融市场上,还有一种产品在到期时不管市场情况如何都拥有确定的价值,这就是债券。买入债券后总能在到期时获得一定的债券收益(利息)。因此,不存在必须让到期价值相同的两类投资的当前价格相同。这个价格可由债券利息轻松求出。当利率为20%时,要想获得1500元的到期价值,我们只需在当前时点购买1250(1500÷(1+0.2)=1250)元的债券。
买入0.5份股票、卖出1份认购期权的投资组合到期价值总是1500元,而该组合的当前价值又应该是多少呢?当前市场的股票价格为5000元,认购期权的价格为尚不确定的C,投资组合价值为0.5×5000-C。由于该组合到期价值总是1500元,因此该组合当前价值应为1250元,因为有0.5×5000-C=1250,解该方程得到C=1250元。利用股票(标的资产)、认购期权、债券三个金融产品合理构建投资组合,就可以求得在当前时点中认购期权的合理价格。简单整理上述的过程如下:
(1)买入△份股票(标的资产)和卖出一份认购期权构成投资组合。
(2)求解得到到期时任何情况下都拥有相同价值的△值。
(3)投资组合的当前价值=到期价值÷(1+利率)。
(4)从“△×股票现价-C=到期价值÷(1+利率)”中得出认购期权价格C。
上面所求得的认购期权合理价格C为1250元,我们再仔细审视一下“合理价格”的意义。在上面的例子中,合理价格意味着在给定条件的情况下,当前时点认购期权应该以1250元的价格在市场上成交。如果该期权因受其他因素的影响以1350元的价格成交,那么我们就认为该期权被高估了100元;相反,如果该期权以1150元的价格成交,那么我们就认为该期权被低估了100元。即如果该期权不是以1250元的价格交易,那么我们就可以通过构建适当的投资组合,在任何市场环境下都能获得确定的收益。