- 机器人智能运动规划技术
- 祁若龙 张珂编著
- 1204字
- 2021-12-17 16:43:49
2.3 五次分段样条拟合
2.3.1 三次样条边界估计
从原理上,测量点越多,样条拟合精度就越高。但在实际工作条件下,测量点过密不但需要花费大量的测量时间,而且密集测量点处的误差会使样条在局部产生剧烈扭曲。为了使机器人能够在尽可能短的时间内对大型工件进行测量,最好的方法是测量一系列稀疏离散点,采用高精度数据拟合方法拟合焊缝位置。
现有的数据拟合方法有二次、三次、四次和五次样条。二次和四次样条属于偶数次样条,偶数次样条具有双曲线类似的几何对称性,一般很少应用在工程项目中。三次和五次样条拟合方法分为整体拟合方法和分段拟合方法。相对于分段拟合方法,整体拟合方法的计算过程复杂,需要求解高维线性方程组,而且易出现龙格(Runge)现象,样条在两端处波动极大,甚至会产生剧烈抖动。分段拟合方法计算简单,但是分段样条在样条段的连接处很难达到高阶连续可导。因此,本章提出了以三次样条进行导数估计的五次分段样条边界条件的拟合方法,该方法计算简单但能够保证样条曲线在样条段连接处具有良好的数学性质。
假设依据2.2.2节中的方法,得到的测量点坐标为[P1,P2,…,Pn]。连接测量点Pi-1(xi-1,yi-1,zi-1)和测量点Pi(xi,yi,zi)的样条曲线可以通过四个测量点Pi-1、Pi、Pi+1和Pi+2由式(2-3)求得
式中,u是弦长参数,u∈(0,li-1);其中li-1是从测量点Pi-1到测量点Pi的距离,也是空间曲线在Pi-1点和Pi点之间的弦长距离。
定义符号li-1,和li-1,,用来表示多个弦高差的累加和
式(2-3)中的参数ai、bi、ci、di可计算为
为了通过三次样条对五次分段样条函数的边界条件进行估计,测量点Pi处的一阶和二阶导数可以通过对式(2-3)求导得到。Pi的一阶和二阶导数可以计算为
由于缺少临近点,首个测量点P1和末端两个测量点Pn-1和Pn的导数无法用上述方法进行估计,因此用其所在临近样条段的扩展弧长参数对其导数进行估计,即
2.3.2 五次样条拟合
在三维笛卡儿空间中,以测量点处的一阶和二阶导数为边界条件进行五次样条拟合。为求得五次样条参数,需要借助式(2-14)~式(2-16)得到的样条段的边界条件
五次样条函数形式如式(2-17)所示
式中
当参数u=0时,有
当参数u=li时,有
由此,Ai、Bi、Ci、Di、Ei、Fi可以计算为
至此,可以对测量点进行基于三次样条边界条件估计的五次样条拟合。但是,得到的拟合曲线并不是工件焊缝,而是与工件焊缝相距一个测头半径长度的偏置曲线。偏置方向是沿着复杂曲面零件被测点的法线方向。
为了得到实际加工轨迹,一方面需要对样条函数所表达的曲线进行离散化,另一方面需要确定搅拌摩擦焊接轨迹的刀具法向矢量。在机器人和其他数控设备中,系统的连续运动在微观上是由每个控制周期微小时间片内机器人系统运动的微小直线段组成的。在机器人加减速控制和惯性作用下,微小直线段之间高阶连续平滑。搅拌摩擦焊接过程负载很大,为了使机器人运动具有更加稳定的动态特性,需要在轨迹离散时进行与动态特性相关的规划。拟合曲线离散后的点在沿着工件法向矢量反向上偏置一个测头半径的距离就是实际加工的刀位点。