命题II 定理II

每一个物体,它在一个平面上画出的某一曲线上运动,且向或者不动的或者均匀地一直向前运动的点引半径,[半径]围绕那个点画出的面积与时间成比例,则物体被趋向同一个点的向心力所推动。

情形1 因每个在曲线上运动的物体,由作用在自身上的某个力使物体从直线路径弯折(由定律I)。且那个力,它使物体从直线路径弯折,围绕不动的中心S在相等的时间画出极小的相等的三角形SAB,SBC,SCD,等等,在位置B[力的]作用沿与cC平行的直线(由《几何原本》第I卷命题XL,以及定律II),这就是,沿直线BS;在位置C沿与dD平行的直线,这就是,沿直线SC,等等。所以,作用总沿着趋向那个不动的点S的直线。此即所证

情形2 且由诸定律的系理5,无论物体在其上画出曲线图形的表面静止,或者它与物体,画出的图形及点S一起均匀地向前运动,并无差别。

系理1 在没有阻力的空间或介质中,如果面积不与时间成比例,则力不趋向半径的交点;而从那里向前(in consequentia)偏离,或者朝向运动发生的方向,只要画出的面积被加速;但如果它被迟滞,则从那里向后(in antecedentia)偏离。

系理2 在有阻力的介质中,如果所画出的面积被加速,力的方向从半径的交点朝向运动发生的方向偏离。

解释

物体可能由多个力合成的向心力推动。在这种情形命题的意义是那个由所有力合成的力趋向点S。而且如果其他力沿垂直于所画出的表面的直线持续作用,这引起物体离开它运动的平面,但画出的表面既不增加亦不减小,且所以[此力]在合力中被忽略。