数学简化

鉴于启发法任由搜索空间自由发展(这样程序就可以专注于搜索空间里最合适的部分),简化假设构造了一个不切实际但更易于计算的搜索空间。

一些假设和数学相关,如机器学习中通常使用的“i.i.d.”(独立同分布)假设。与数据中实际的概率构成相比,用i.i.d.表示的概率构成要简单得多。

数学简化在定义搜索空间时的优点是可以利用搜索的数学方法。这种方法定义清晰,而且至少方便数学家理解。这并不代表任何数学定义的搜索都有实际使用价值。如上所述,某一方法在数学层面可以保证解决某一特定类别的所有问题,但是该方法在实际运用中并不适用,因为其时间成本可能是无限的。然而,它可能建议与此类似但更实际的方法,请见第4章中有关“反向传播”的讨论。

在人工智能领域,非数学的简化假设比比皆是,并且通常很直接。一种是假定无须考虑情感因素(见第3章)就能定义和解决问题的(默认)假设。还有很多假设被构建在用来指定任务的一般知识表示中。