(二)题型

从题干的形式和考查的内容上分析,数学运算题可分为几种不同类型。为了更加高效的解题,在考试当中争分夺秒,我们需要熟悉各个题型特点,优化解题思路。从历年考试当中可看出数学运算题主要题型有:计算问题、几何问题、组合问题、行程问题、比例问题和其他问题。

1.计算问题

(1)数的性质

【例1】有一个整数,用它分别去除157、324和234,得到的三个余数之和是100,求这个整数是(  )。

A.44

B.43

C.42

D.41

【答案】D

【解析】由题意可知,所求整数能够整除157+324+234-100=615,615÷41=15。因此答案选D。

【例2】有四个自然数A,B,C,D,它们的和不超过400,并且A除以B商是5余5,A除以C商是6余6,A除以D商是7余7。那么,这四个自然数的和是(  )。

A.216

B.108

C.314

D.348

【答案】C

【解析】A=B×5+5=5×(B+1),A=C×6+6=6×(C+1),A=D×7+7=7×(D+1),故A是5、6、7的倍数,又因为5,6,7的最小公倍数是210,所以A是210的倍数,而A不超过400,故A=210,代入上述余数基本恒等式,得B=41,C=34,D=29,即这四个自然数的和是A+B+C+D=314。

【例3】2011×201+201100-201.1×2910的值为(  )。

A.20110

B.21010

C.21100

D.21110

【答案】A

【解析】2011×201+201100-201.1×2910=2011×(201+100-291)=2011×10=20110。

(2)算式计算

【例1】已知两列数2,5,8,11…… 2+(100-1)×3;5,9,13,17……5+(100-1)×4。它们都是100项,则两列数中相同的数有(  )项。

A.24

B.25

C.26

D.27

【答案】B

【解析】第一个这两个数列中相同的项是5,且第一个数列的公差为3,第二个数列的公差为4,则这两个数列中相同的项既是3的倍数又是4的倍数,所求即转换为求首项为5,公差为12的等差数列的项数,又第一个数列最大的数为2+(100-1)×3=299,第二个数列最大的数为5+(100-1)×4=401,新数列最大不能超过299,又5+12×24=293,5+12×25=305,则两列数中相同的数有25项。

【例2】小明今年(1995年)的年龄是他出生那年的年份的数字之和。问:小明今年多少岁?(  )

A.21

B.24

C.18

D.20

【答案】A

【解析】设小明出生时是19ab,则1+9+a+b=95-10a-b,从而11a+2b=85。当a≥8时,11a+2b>85;当a≤6时,11a+2b≤66+2×9=84,所以必有a=7,b=4,即小明今年是1+9+7+4=21岁。

【例3】如x⊕y=x2+y2,则3⊕1⊕3=(  )。

A.109

B.100

C.120

D.160

【答案】A

【解析】3⊕1=32+12=10,则3⊕1⊕3=10⊕3=102+32=109。

2.几何问题

(1)平面几何问题

【例】一个正三角形和一个正六边形周长相等,则正六边形面积为正三角形的(  )。

A.

B.1.5倍

C.

D.2倍

【答案】B

【解析】设正三角形和一个正六边形的周长为6,六边形的边长为1,三角形的边长为2;正六边形可以分成6个边长为1的小正三角形,边长为2的正三角形可以分成4个边长为1的小正三角形。所以正六边形面积:正三角形的面积=6:4,即正六边形面积为正三角形的1.5倍。

(2)立体几何问题

【例】工作人员做成了一个长60厘米、宽40厘米、高22厘米的箱子,因丈量错误,长和宽均比设计尺寸多了2厘米,而高比设计尺寸少了3厘米,那么该箱子的表面积与设计时的表面积相差多少平方厘米?(  )

A.4

B.20

C.8

D.40

【答案】C

【解析】由题意可知,原设计的箱子的表面积为2×(58×38+38×25+58×25),尾数为8,加工后的箱子表面积为2×(60×40+60×22+40×22),尾数为0,则表面积差为2×(58×38+38×25+58×25)-2×(60×40+60×22+40×22),8-0=8平方厘米。

(3)几何性质问题

【例】N是正方形ABCD内一点,如果NA:NB:NC=2:4:6,则∠ANB的度数为(  )。

A.120°

B.135°

C.150°

D.以上都不正确

【答案】B

【解析】过B作BN′⊥BN,且使BN′=BN,连接N′A,N′N,如下图所示,因为∠N′BN=∠ABC=90°,得∠N′BA=∠NBC。又因为AB=BC,BN′=BN,有△N′AB≌△NCB,则N′A=NC,设NB=4x,NC=N′A=6x。在直角△NBN′中,∠NN′B=45°,且NN′=4x,在△N′AN中,N′A=N′N,所以∠N′NA=90°,得∠ANB=135°。

图1-1

(4)平面解析几何

【例】在平面直角坐标系中,如果点P(3a-9,1-a)在第三象限内,且横坐标纵坐标都是整数,则点P的坐标是(  )。

A.(-1,-3)

B.(-3,-1)

C.(-3,2)

D.(-2,-3)

【答案】B

【解析】点P在第三象限,则横坐标和纵坐标都小于0,即3a-9<0,1-a<0,解得1<a<3。由于横纵坐标都是整数,所以a是整数,则a=2。因此P点坐标为(-3,-1)。

3.组合问题

(1)常规排列组合

【例】由0,1,2,3,4,5六个数组成的六位数从小到大排列,第五百个数是多少?(  )

A.504123

B.504213

C.504132

D.504231

【答案】C

【解析】由1为最高位,则根据排列组合规律,共有5×4×3×2×1=120个数,同理,以2为最高位也有120个数,依次类推,500÷120=4…20,则第500个数是以5为最高位、从小到大排列的第20个数字。以5为最高位,0为下一位的数字有4×3×2×1=24个。所以所求数字是以5为首位,0为万位的数。以1为千位上的数,则有3×2×1=6个数字,故所求数字的千位上的数不为1。以2为千位上的数字同理有6个数字,6+6=12,不到20。20÷6=3…2,依此类推可知千位数字为4的数字中有所求数字,且是千位为4的数字中第二小的数字。因此该数字为504132。

(2)概率问题

【例】有5对夫妇参加一场婚宴,他们被安排在一张10个座位的圆桌就餐,但是婚礼操办者并不知道他们彼此之间的关系。只是随机安排座位。问5对夫妇恰好都被安排在一起相邻而坐的概率是多少?(  )

A.不超过1%

B.超过1%

C.在5‰到1%之间

D.在1‰到5%之间

【答案】D

【解析】不附加任何条件,10人环线排列的情况总数是=9!;5对夫妇都相邻而坐,则可以看成由两步来完成,首先把每对夫妇看成一个人,5个人环线排列,然后考虑每对夫妇内部的顺序。第一步有=4!种情况;第二步有2×2×2×2×2=32种情况。所以情况总数是4!=32。5对夫妇恰好都被安排在一起相邻而坐的概率=,这个数的值应该略大于=2‰,D项最接近。

(3)容斥原理

【例】某地区目前就业状况如下:有2900人报考公务员,博士生有450人,研究生有600人,大学生有1200人,专科生有650人。要保证考上公务员的有600人是同一学历,问至少有多少人考上公务员?(  )

A.2248人

B.601人

C.2150人

D.1200人

【答案】A

【解析】由题意可知,每一类别都有尽可能多的人考上,但是不到600人。此时,再多一人,就达到了600人,则研究生599人,大学生599人,专科生599人,博士生450人,即最少有599×3+450+1=2248人,即最少有599×3+450+1=2248人。

(4)抽屉原理

【例】对若干人进行测试,一共5道题,规定每道题做对得2分,没做得1分,做错得0分。考官说这次测试至少有3个人每道题的得分都一致。则至少有多少人参加测试?(  )

A.450

B.488

C.243

D.487

【答案】D

【解析】每道题都有3种得分的可能性,则得分情况共有35=243种,则至少有243×(3-1)+1=487人参加测试。

4.行程问题

(1)初等行程问题

【例】一个人从家到公司,当他走到路程的一半的时候,速度下降了10%,问:他走完全程所用时间的前半段和后半段所走的路程比是(  )。

A.10:9

B.21:19

C.11:9

D.22:18

【答案】B

【解析】设前半程速度为10,则后半程速度为9,路程总长为180,则前半程用时9,后半程用时10,总耗时19,一半为9.5。因此前半段时间走过的路程为90+9×(9.5-9)=94.5,后半段时间走过的路程为9×9.5=85.5。两段路程之比为94.5:85.5=21:19。

(2)相遇问题

【例】甲车从A地,乙车和丙车从B地同时出发,相向而行。已知甲车每小时行65公里,乙车每小时行73公里,丙车每小时行55公里。甲车和乙车相遇后,经过15小时又与丙车相遇,那么A、B两地相距(  )公里。

A.10100

B.13800

C.10600

D.14800

【答案】B

【解析】由题意可知,设从出发到甲乙相遇经过了t小时,得65×15+55×15+55t=73t,得t=100;A、B两地的距离应为:65×100+73×100=13800公里。

(3)追及问题

【例】甲和乙在长400米的环形跑道上匀速跑步,如两人同时从同一点出发相向而行,则第一次相遇的位置距离出发点有150米的路程;如两人同时从同一点出发同向而行,问跑得快的人第一次追上另一人时跑了多少米?(  )

A.600

B.800

C.1000

D.1200

【答案】C

【解析】由“第一次相遇的位置距离出发点有150米的路程”可知,两个人分别跑了250米和150米,两人相差250-150=100米。若两人同时从同一点出发同向而行,跑得快的人第一次追上另一人时定多跑了400米,而速度未变,则此时跑得快的人跑了400÷100×250=1000米。

(4)行船问题

【例】小刚和小强租一条小船,向上游划去,不慎把空塑料水壶掉进江中,当他们发现并调过头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?(  )

A.0.2小时

B.0.3小时

C.0.4小时

D.0.5小时

【答案】D

【解析】根据题意,小船调转船头追水壶时为顺流,小船的顺流速度是4+2=6千米/时;此时水壶与船已经相距2千米,即追及路程是2千米,水壶的速度即为水流速度,则追及时间为=0.5小时。

(5)其他行程问题

【例】一条环形赛道前半段为上坡,后半段为下坡,上坡和下坡的长度相等,两辆车同时从赛道起点出发同向行驶,其中A车上下坡时速相等,而B车上坡时速比A车慢20%,下坡时速比A车快20%。问在A车跑到第几圈时,两车再次齐头并进?(  )

A.22

B.23

C.24

D.25

【答案】D

【解析】设A车速度为ν,则B车上坡速度为0.8ν、下坡速度为1.2ν,由等距离平均速度公式可知,B车完成一圈的平均速度为=O.96ν,则A车与B车的速度之比为25:24,即A车完成25圈时,两车同时回到起点。

5.比例问题

(1)工程问题

【例】一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天。甲、乙、丙三人共同完成该工程需(  )。

A.10天

B.12天

C.8天

D.9天

【答案】A

【解析】设工作量为90,则甲效率为3,甲效率+乙效率=5,乙效率+丙效率=6,即甲效率为3,乙效率为2,丙效率为4,则三人合作所需时间为90÷(3+2+4)=10天。

(2)浓度问题

【例】10个完全一样的杯子,其中6个杯子装有10克酒精,4个杯子装有10克纯水。如果从中随机拿出4个杯子将其中的液体进行混合,问最终得到50%酒精溶液的可能性是得到75%酒精溶液的可能性的多少倍?(  )

A.

B.

C.

D.

【答案】D

【解析】每个杯子液体质量均为10克,则4杯液体的总质量为40克,若混合液浓度为50%,则要求酒精为20克,即2杯,此时水也应该为2杯;混合液浓度为75%,则要求酒精为30克,即3杯,则此时水应该为1杯;得到50%浓度混合液的概率为,得到75%浓度混合液的概率为,两个概率相除得

(3)钟表问题

【例】4时30分后,时针与分针第一次成直线的时刻为(  )。

A.4时40分

B.4时45

C.4时54

D.4时57分

【答案】C

【解析】时针一小时走30度,每分钟走0.5度;分针1分钟走6度。四点半时,时针与分针的夹角是45度,则第一次成直线需要(180-45)÷(6-0.5)=24又分,即4点54又分时第一次成直线。

(4)牛吃草问题

【例】林子里有猴子喜欢吃的野果,23只猴子可以在9周内吃光,21只猴子可以在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光?(假定野果生长的速度不变)(  )

A.2周

B.13周

C.4周

D.5周

【答案】C

【解析】设一只猴子每周吃的野果量为1个单位,每周生长的野果量为(21×12-23×9)÷(12-9)=15个单位。原有的野果量为(23-15)×9=72个单位。所以33只猴子一共可以吃72÷(33-15)=4周。

6.其他问题

(1)年龄问题

【例】赵先生34岁,钱女士30岁。一天他们碰上了赵先生的三个邻居,钱女士问起了他们的年龄,赵先生说:他们三人的年龄各不相同,三人的年龄之积是2450,三人的年龄之和是我俩年龄之和。问三个邻居中年龄最大的是多少岁?(  )

A.42

B.45

C.49

D.50

【答案】D

【解析】三人年龄之积为2450=1×2×5×5×7×7,但同时三人年龄之和必须为64,则有10×5×49=2450,10+5+49=64,即最大的为49岁。

(2)日期问题

【例】小孙出差归来,发现日历有好几天没翻了,就一次翻了6张,这6天的日期数字加起来是123,请问今天的日期应该是(  )。

A.26号

B.24号

C.23号

D.21号

【答案】B

【解析】6个日期数之和是123,平均数就是123÷6=20.5,也就是说中间两天的日期应该是20号和21号,这6天的日期依次是18、19、20、21、22、23。那么今天的日期应该是24号。

(3)利润问题

【例】小王周末组织朋友自助游,费用均摊,结账时,如果每人付450元,则多出100元;如果小王的朋友每人付430元,小王自己要多付60元才刚好,这次活动人均费用是(  )。

A.437.5元

B.438.0元

C.432.5元

D.435.0元

【答案】A

【解析】设参加活动的人数为x,即450x-100=430x+60,得x=8。因此每个人的均摊费用为(450×8-100)÷8=437.5元。

(4)统筹规划问题

【例】某公司的6名员工一起去用餐,他们各自购买了三种不同食品中的一种,且每人只购买了一份。已知盖饭15元一份,水饺7元一份,面条9元一份,他们一共花费了60元。问他们中最多有几人买了水饺?(  )

A.1

B.2

C.3

D.4

【答案】C

【解析】设买盖饭、水饺、面条的人分别有x、y、z个。由题意则有15x+7y+9z=60,x+y+z=6。两式联立得y=3(x-1),由于都是整数,所以y只能取0、3、6。由题意可知,y最多取3。

(5)趣味杂题

【例】一次测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分;回答完全错误或不回答,得0分。至少(  )人参加这次测验,才能保证至少有3人的得分相同。

A.89人

B.90人

C.91人

D.92人

【答案】C

【解析】由评分标准可知,最高得分为50分,最低得分为0分,由于在0~50分之间,1分、2分、4分、7分、47分、49分不可能出现,故共有51-6=45种不同得分情况,最不利的情况是每种得分情况都有两个人对应,那么若再加一人,则无论他是哪种得分情况都可以保证至少有3人的得分相同,即至少有45×2+1=91人参赛。