第53章 ON CORAL AND CORAL REEFS [110](8)

For example, Australia and New Guinea are separated by Torres Straits, a broad belt of sea one hundred or one hundred and twenty miles wide. Nevertheless, there is in many respects a curious resemblance between the land animals which inhabit New Guinea and the land animals which inhabit Australia. But, at the same time, the marine shellfish which are found in the shallow waters of the shores of New Guinea are quite different from those which are met with upon the coasts of Australia. Now, the eastern end of Torres Straits is full of atolls, which, in fact, form the northern termination of the Great Barrier Reef which skirts the eastern coast of Australia. It follows, therefore, that the eastern end of Torres Straits is an area of depression, and it is very possible, and on many grounds highly probable, that, in former times, Australia and New Guinea were directly connected together, and that Torres Straits did not exist. If this were the case, the existence of cassowaries and of marsupial quadrupeds, both in New Guinea and in Australia, becomes intelligible; while the difference between the littoral molluscs of the north and the south shores of Torres Straits is readily explained by the great probability that, when the depression in question took place, and what was, at first, an arm of the sea became converted into a strait separating Australia from New Guinea, the northern shore of this new sea became tenanted with marine animals from the north, while the southern shore was peopled by immigrants from the already existing marine Australian fauna.

Inasmuch as the growth of the reef depends upon that of successive generations of coral polypes, and as each generation takes a certain time to grow to its full size, and can only separate its calcareous skeleton from the water in which it lives at a certain rate, it is clear that the reefs are records not only of changes in physical geography, but of the lapse of time. It is by no means easy, however, to estimate the exact value of reef chronology, and the attempts which have been made to determine the rate at which a reef grows vertically have yielded anything but precise results. Acautious writer, Mr. Dana,[125] whose extensive study of corals and coral reefs makes him an eminently competent judge, states his conclusion in the following terms:--"The rate of growth of the common branching madrepore is not over one and a half inches a year. As the branches are open, this would not be equivalent to more than half an inch in height of solid coral for the whole surface covered by the madrepore; and, as they are also porous, to not over three-eighths of an inch of solid limestone. But a coral plantation has large bare patches without corals, and the coral sands are widely distributed by currents, part of them to depths over one hundred feet where there are no living corals; not more than one-sixth of the surface of a reef region is, in fact, covered with growing species. This reduces the three-eighths to ONE-SIXTEENTH. Shells and other organic relics may contribute one-fourth as much as corals. At the outside, the average upward increase of the whole reef-ground per year would not exceed ONE-EIGHTH of an inch.

"Now some reefs are at least two thousand feet thick, which at one-eighth of an inch a year, corresponds to one hundred and ninety-two thousand years."** Dana, Manual of Geology, p. 591.

Halve, or quarter, this estimate if you will, in order to be certain of erring upon the right side, and still there remains a prodigious period during which the ancestors of existing coral polypes have been undisturbedly at work; and during which, therefore, the climatal conditions over the coral area must have been much what they are now.

And all this lapse of time has occurred within the most recent period of the history of the earth. The remains of reefs formed by coral polypes of different kinds from those which exist now, enter largely into the composition of the limestones of the Jurassic period;[126] and still more widely different coral polypes have contributed their quota to the vast thickness of the carboniferous and Devonian strata. Then as regards the latter group of rocks in America, the high authority already quoted tells us:--"The Upper Helderberg period is eminently the coral reef period of the palaeozoic ages. Many of the rocks abound in coral, and are as truly coral reefs as the modern reefs of the Pacific. The corals are sometimes standing on the rocks in the position they had when growing: others are lying in fragments, as they were broken and heaped by the waves; and others were reduced to a compact limestone by the finer trituration before consolidation into rock. This compact variety is the most common kind among the coral reef rocks of the present seas; and it often contains but few distinct fossils, although formed in water that abounded in life. At the fall of the Ohio, near Louisville, there is a magnificent display of the old reef. Hemispherical Favosites, five or six feet in diameter, lie there nearly as perfect as when they were covered by their flowerlike polypes; and besides these, there are various branching corals, and a profusion of Cyathophyllia, or cup-corals."*

* Dana, Manual of Geology, p. 272.

Thus, in all the great periods of the earth's history of which we know anything, a part of the then living matter has had the form of polypes, competent to separate from the water of the sea the carbonate of lime necessary for their own skeletons. Grain by grain, and particle by particle, they have built up vast masses of rock, the thickness of which is measured by hundreds of feet, and their area by thousands of square miles. The slow oscillations of the crust of the earth, producing great changes in the distribution of land and water, have often obliged the living matter of the coral-builders to shift the locality of its operations; and, by variation and adaptation to these modifications of condition, its forms have as often changed. The work it has done in the past is, for the most part, swept away, but fragments remain, and, if there were no other evidence, suffice to prove the general constancy of the operations of Nature in this world, through periods of almost inconceivable duration.