1.3.2 国内的发展现状

我国MEMS的研究始于20世纪90年代初,起步并不晚,在“八五”、“九五”期间得到了科技部、教育部、中国科学院、国家自然科学基金委和原国防科工委的支持。经过10年的发展,我国在多种微型传感器、微型执行器和若干微系统样机等方面已有一定的基础和技术储备,初步形成了几个MEMS研究力量比较集中的地区。包括京津地区,如清华大学、北京大学、中科院电子所、原信息产业部电子13所、南开大学等;华东地区,如中科院上海冶金所、上海交通大学、复旦大学、上海大学、东南大学、浙江大学、中国科技大学、厦门大学等;东北地区,如信息产业部电子49所、哈尔滨工业大学、中科院长春光机所、大连理工大学、沈阳仪器仪表工艺研究所等;西南地区,如重庆大学,原信息产业部电子24所、44所和26所等;西北地区,如西安交通大学、西北工业大学、西安电子科技大学、航空618所、航天771所等。这些因地域而组成的研究集群,已形成彼此协作、互为补充的关系,为我国的MEMS研究打下了良好的基础。

在科研能力积累上,1996年建设的微米/纳米加工技术国家级重点实验室,使我国的MEMS加工技术研究得到较大提高,实验室购置了当时国际上最先进的MEMS加工关键设备,如STS深槽刻蚀机、键合对准机、可用于硅/玻璃静电键合和硅/硅预键合的Karlsuss键合机、LPCVD、压塑机等,连同配套的IC设备,如溅射台、扩散炉、RIE刻蚀机、PECVD、光刻机等设备,初步构成了具有国际先进水平的MEMS加工线。这些设备结合一些分散于各研究机构的微电子工艺线和微加工设备,组成了目前我国的MEMS加工技术基础。在上述设备的基础上,已开发出具有一定水平的MEMS加工技术。其中北京大学所属微米/纳米加工技术重点实验室分部开发出4种MEMS全套加工工艺和多种先进的单项工艺,已制备出加速度计样品,并已开始为国内研究MEMS的单位提供加工服务。上海交通大学所属微米/纳米加工技术重点实验室分部可以提供非硅材料的微加工服务,如LIGA技术制作高深宽比微结构的基本加工技术,紫外深度光刻(UV⁃LIGA)、高深宽比微电铸和模铸加工,功能材料薄膜制备等。中国电子科技集团微电子研究所研究的融硅工艺也取得了较大进展,已制备出微型加速度计和微型陀螺样品。另外,由北京大学牵头,联合了东南大学、南开大学、中国华大集成电路设计中心、中国科技大学等国内优势单位,在国家“973计划”资助下开展了“微系统设计方法、建模、数据库和仿真相关问题研究”,目前已经建立了一个包括版图设计、工艺模拟、性能分析等主要功能的MEMS CAD原型系统IMEE 1.0。

经过10多年发展,我国已在微型惯性器件和惯性测量组合、机械量微型传感器和制动器、微流量器件和系统、生物传感器和生物芯片、微型机器人和微操作系统、硅和非硅制造工艺等方面取得一定成果。现有的技术条件已初步形成MEMS设计、加工、封装、测试的一条龙体系,为保证我国MEMS技术的进一步发展提供了较好的平台。中国MEMS研究的覆盖面是很宽的,跟踪美国、日本和西欧新器件的速度是比较快的。从科研的角度来看,中国列于国际排名的前十位之中。然而,中国MEMS的发展存在严重的缺陷,应该从以下几方面来实现MEMS的跨越式发展。

(1)集中力量,统一指挥。打破部门、地区的界限,集中优势力量确保计划的实施,在落实任务和经费分配时实行招标或择优委托,把任务落实到确有优势的单位和专家集体,并重点在研究单位相对集中的地区建设若干个各具特色的材料、设计、工艺、装备与制造基地,形成MEMS先进制造加工基地网,避免过去各单位重复研究、分散立项的弊端。经费专款专用,在人、财、物上集中力量统一指挥,充分发挥有限资源的作用。

(2)创新机制。MEMS基础研究、工艺研究、装备研发、产业化等诸多环节要有机结合,防止科研与市场脱节、工艺与装备脱节;采取政府导向、“产学研”联合、市场化运作的方针,以多种形式吸引地方、企业共同投资。

(3)引进人才,加强合作。把人才作为MEMS研发的关键因素之一,通过多种机制和特惠政策支持,吸引国内外MEMS研发的高层次人才。积极开展MEMS的国际交流合作,提高我国MEMS研究的起点。

(4)跨越发展。在MEMS设计、工艺、制造装备等方面,鼓励创新,开发具有自主知识产权的技术,实现MEMS的跨越发展。