会员
推荐系统技术原理与实践
更新时间:2023-12-21 17:34:41 最新章节:8.8 小结
书籍简介
本书系统介绍推荐系统的技术理论和实践。首先介绍推荐系统的基础知识;然后介绍推荐系统常用的机器学习和深度学习模型;接着重点介绍推荐系统的4层级联架构,包括召回、粗排、精排和重排,以及谷歌、阿里巴巴等大型互联网公司在4层级联架构中的模型设计和实现原理;紧接其后介绍多目标排序在推荐系统中的应用,具体介绍阿里巴巴、谷歌等大型互联网公司的实践;最后从不同角度审视推荐系统,介绍公平性问题、知识蒸馏、冷启动等各种前沿实践。本书基于一线研发人员的视角向读者分享推荐系统的实践经验,所有模型结构和前沿实践都在业务场景中落地。本书适合推荐系统领域的从业者、高校科研人员、高校计算机专业学生,以及对推荐系统感兴趣的产品研发人员和运营人员阅读。
品牌:人邮图书
上架时间:2023-06-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
文亮
同类热门书
最新上架
- 会员本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字
- 会员本书根据李宏毅老师“机器学习”公开课中与深度学习相关的内容编写而成,介绍了卷积神经网络、Transformer、生成模型、自监督学习(包括BERT和GPT)等深度学习常见算法,并讲解了对抗攻击、领域自适应、强化学习、元学习、终身学习、网络压缩等深度学习相关的进阶算法.在理论严谨的基础上,本书保留了公开课中大量生动有趣的例子,帮助读者从生活化的角度理解深度学习的概念、建模过程和核心算法细节.计算机19.5万字
- 会员本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的核心知识、原理和内在逻辑。经过基础篇的学习,想必你已经对深度学习的总体框架有了初步的了解和认识,掌握了深度神经网络从核心概念、常见问题到典型网络的基本知识。本书为核心篇,将带领读者实现从入门到进阶、从理论到实战的跨越。全书共7章,前三章包括复杂CNN、RNN和注意力机制网络,深入详解各类主流模型及其变体;第4章介绍这三类基计算机13.4万字
- 会员这是一个“算法世界”:建立在数据之上的算法指导社会的运行、决定我们能在网上看到什么;它更是自动驾驶、智能管家、未来医疗以至智慧城市的基石。如果我们不了解算法如何使用数据,就无法知道人工智能将如何改变我们的生活。通过采访谷歌和剑桥分析公司的数据专家、亲自模拟高科技巨头的算法模型,萨普特带我们直击智能产品背后的秘密、思考数字科技给社会带来的风险。我们对科技和互联网的日益依赖,使数据研究者能够收集与我们计算机14.8万字
- 会员AI大模型正成为数字经济时代的新质生产力,它将对经济社会的各行各业产生重大影响。本书详细介绍了AI大模型在各个领域的无限潜力和广阔前景。从精准农业的种植建议到智能制造的质量控制和精益生产,从医疗诊断的精准高效到文化传媒的智能化创新,从旅游业的个性化服务到教育领域的智能化辅助,从零售业的创新应用到交通运输业的智能化变革,AI大模型正在深度融入并引领各领域和行业的数字化转型。本书不仅提供全面的行业洞察计算机16.6万字