
会员
强化学习:原理与Python实战
更新时间:2023-10-19 17:44:38 最新章节:封底
书籍简介
本书从原理和实战两个方面介绍了强化学习。原理方面,深入介绍了主流强化学习理论和算法,覆盖资格迹等经典算法和MuZero等深度强化学习算法;实战方面,每章都配套了编程案例,以方便读者学习。全书从逻辑上分为三部分。第1章:从零开始介绍强化学习的背景知识,介绍环境库Gym的使用。第2~15章:基于折扣奖励离散时间Markov决策过程模型,介绍强化学习的主干理论和常见算法。采用数学语言推导强化学习的基础理论,进而在理论的基础上讲解算法,并为算法提供配套代码实现。基础理论的讲解突出主干部分,算法讲解全面覆盖主流的强化学习算法,包括经典的非深度强化学习算法和近年流行的强化学习算法。Python实现和算法讲解一一对应,还给出了深度强化学习算法的TensorFlow和PyTorch对照实现。第16章:介绍其他强化学习模型,包括平均奖励模型、连续时间模型、非齐次模型、半Markov模型、部分可观测模型等,以便更好了解强化学习研究的全貌。
品牌:机械工业出版社
上架时间:2023-08-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
肖智清
- 会员全书分为三个部分。第一部分了解强化学习应用,了解强化学习基本知识,搭建强化学习测试环境。该部分包括:强化学习的概况、强化学习简单示例、强化学习算法的常见思想、强化学习的应用、强化学习测试环境的搭建。第二部分介绍强化学习理论与深度强化学习算法。强化学习理论部分:Markov决策过程的数学描述、MonteCarlo方法和时序差分方法的数学理论;深度强化学习算法部分:详细剖析全部具有重要影响力的深度强程序设计12.2万字
最新上架
- 会员本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI计算机15.8万字
- 会员本书强调“把AI作为方法”(AI即ArtifcialIntelligence,人工智能)这一核心理念,旨在引导读者掌握与AI对话的关键技巧,并将AI融入工作和生活真正体验AI带给人类的高效与便捷。本书从技术的发展规律人手,探讨了把AI作为方法的必然性和必要性,进一步剖析了算法与哲学在内在逻辑上的贯通性。此外,本书通过丰富多样的案例展示了AI的强大魅力,通过一系列“召唤术”帮助读者运用AI创造性地计算机9.7万字
- 会员本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字
- 会员近年来,在自然语言处理领域,基于预训练语言模型的方法已形成全新范式。本书内容分为基础知识、预训练语言模型,以及实践与应用3个部分,共9章。第一部分全面、系统地介绍自然语言处理、神经网络和预训练语言模型的相关知识。第二部分介绍几种具有代表性的预训练语言模型的原理和机制(涉及注意力机制和Transformer模型),包括BERT及其变种,以及近年来发展迅猛的GPT和提示工程。第三部分介绍了基于Lang计算机12.7万字
- 会员本书共14章,主要内容包括探索性数据分析、有监督学习(线性回归、SVM、决策树等)、无监督学习(降维、聚类等),以及深度学习的基础原理和应用等。计算机18万字
同类书籍最近更新
- 会员本书分为两个部分,共12章。第1章到第5章介绍了大数据的本体论、机器学习的基本理论等内容,为具体场景、算法的实践奠定了基础。读者可以了解到,在工程实践中,对大数据的处理、转化方式与人类学习知识并将其转化为实践的过程是多么相似。在对机器学习的介绍中,会对其数学原理、训练过程做基本的讲解,并辅以代码帮助读者了解真实场景中技术工具的使用。第6章到第12章提供了多个不同的用例,章节之间彼此独立,介绍了如何人工智能13.3万字
- 会员机器学习包括有监督学习、无监督学习和半监督学习,而具体的问题又大致可以分两类:分类问题和回归问题。本书分为8章,使用Python第三方工具库深入讲解机器学习极大重要算法的实现,内容包括机器学习概述、贝叶斯分类、决策树、集成学习、支持向量机、神经网络、卷积神经网络、卷积神经网络分割图片实战。人工智能8.6万字