深入浅出AI算法:基础概览在线阅读
会员

深入浅出AI算法:基础概览

吕磊
开会员,本书免费读 >

计算机网络人工智能9.7万字

更新时间:2021-08-13 20:18:34 最新章节:书评

立即阅读
加书架
下载
听书

书籍简介

本书从理论到实践,循序渐进地介绍了人工智能算法的基础知识,帮助读者敲开人工智能算法之门。本书内容共8章,包括算法的历史背景与基本概念、算法相关的数学基础知识、信息学算法与数据结构相关的概念与知识,以及业界常用的机器学习算法。同时,本书还介绍了算法工程的组成部分,以及一个典型的算法工程实践项目,手把手带领读者体验算法的魅力。本书还介绍了人工智能算法的三大研究方向,帮助读者迈向AI算法的进阶学习之路。本书每一章的内容都采用了“总分总”形式,并且在章节末尾提炼出该章的核心关键词,方便读者进一步查询回顾。其中,第2章~第7章配有若干代表性的思考题,帮助读者巩固章节所学知识。本书适合从事与人工智能相关的工程技术人员和高等院校相关专业的学生,以及在AI领域就业一两年以内的职场人士阅读。
上架时间:2021-07-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行

最新章节

同类热门书

最新上架

  • 会员
    本书通过13章的探讨,带领读者踏上项目管理卓越之路。第1章“人工智能颠覆与重塑项目管理”,首先揭示了人工智能对项目管理的深刻影响和带来的机遇与挑战。紧接着,第2章至第13章依次介绍了使用ChatGPT编写各种文档、在项目启动中的应用、帮助组建高效团队、辅助项目沟通管理、项目计划与管理、项目成本管理、项目时间管理、项目质量管理、项目风险管理、辅助采购计划与采购流程、辅助项目绩效管理以及进行项目总结等
    关东升计算机16.6万字
  • 会员
    本书内容从技能线和工具线展开介绍。其中,技能线介绍了虚拟数字人的技术原理、商业价值、创建工具等基础内容,以及AI文案、AI绘画、虚拟数字人及其直播、AI视频博主、AI带货主播、AI培训讲师等实操案例。工具线介绍了ChatGPT、StableDiffusion、腾讯智影、剪映等工具的使用方法,并通过实例介绍了使用这些工具制作数字人的技巧。
    木白编著计算机7.1万字
  • 会员
    本书介绍提示工程的基本概念和实践,旨在帮助读者了解如何构建高质量的提示内容。内容包括:认识大语言模型、ChatGPT应用体验、ChatGPTAPI、PythonChatGPTAPI库、提示工程、提示类型、基于提示工程应用Python数据分析等。
    兰一杰 于辉计算机14万字
  • 会员
    本书从技术和规制两个角度入手,以人工智能治理的法律、公共政策以及伦理规范等相关社会行为和社会关系的规则建立和运行为主要思考方向和研究进路,在梳理人工智能发展情况、欧盟及其他国家人工智能立法与政策发布现状的基础上,对人工智能治理的基础、基本路径及我国人工智能产业、政策与规制思路进行了全面和有益的探索。
    杨晓雷主编计算机23.9万字
  • 会员
    本书共九章,分别介绍AI写作工具、AI优化简历、职场入门AI写作、AI项目策划、AI项目复盘、AI高效办公、AI高效沟通、让职场更轻松的软件和AI职场视频剪辑等内容。
    刘丙润编著计算机10.1万字
  • 会员
    近年来,在自然语言处理领域,基于预训练语言模型的方法已形成全新范式。本书内容分为基础知识、预训练语言模型,以及实践与应用3个部分,共9章。第一部分全面、系统地介绍自然语言处理、神经网络和预训练语言模型的相关知识。第二部分介绍几种具有代表性的预训练语言模型的原理和机制(涉及注意力机制和Transformer模型),包括BERT及其变种,以及近年来发展迅猛的GPT和提示工程。第三部分介绍了基于Lang
    徐双双编著计算机12.7万字
  • 会员
    本书共十一章,主要包含四部分:第1章解读ChatGPT的基础原理和提示工程的基本概念;第2至5章介绍提示工程技巧,涵盖有效提示编写、针对复杂任务的提示设计技巧、对话中的提示设计技巧,以及提示的优化与迭代;第6章主要介绍当前ChatGPT推出的进阶功能;第7至11章结合教育领域、市场营销、新媒体运营、软件开发和数据分析实战展示提示工程技巧的应用。
    夏禹计算机12.9万字
  • 会员
    本书从写作与ChatGPT的基础知识讲起,结合创作者的实际写作经历与写作教学经历,介绍了用ChatGPT写作的基础技巧、进阶写作的方法、不同文体的写作方法、写作变现的秘诀,让读者理解写作技巧与变现思路。
    无戒 杜培培 俞庚言计算机14.7万字
  • 会员
    本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络
    叶翰嘉 詹德川计算机19.3万字