会员
机器学习:软件工程方法与实现
更新时间:2021-01-07 17:13:46 最新章节:16.6 本章小结
书籍简介
本书视角独特,将软件工程中的方法应用到机器学习实践中,重视方法论和工程实践的融合。本书主要有3个特点。1)机器学习的软件工程方法:用软件工程(SoftwareEngineering)中的工具、方法和理论指导机器学习的实践活动。主要体现在测试驱动开发(TDD)方法、机器学习项目管理方法、工程化软件应用于数据科学标准化环境,以及开源算法包的大量实践应用案例等。2)机器学习全生命周期:书中全面呈现了机器学习项目开发的完整链路,以项目需求为起点,历经样本定义、数据处理、建模、模型上线、模型监控、模型重训或重建。流程中的大部分节点独立成章,阐述充分,并且不是单纯地阐述理论,而是重在实践。同时,聚焦机器学习中应用最广泛和最有效的算法,使之成为贯穿机器学习项目生命周期的一条完整的学习路径。3)提出机器学习是一门实验学科:书中有大量的工业实践代码,例如数据分析包、特征离散化包、特征选择包、集成模型框架包、大规模模型上线系统架构和对应代码包等,对机器学习算法特性也有大量的代码解析。书中还多次强调对于机器学习这样一门实验和实践学科,工具、方法和策略的重要性,并介绍了在实际项目中对时间、人力成本等的权衡策略。本书不拘泥于公式推演、数值分析计算领域优化求解(梯度、牛顿、拉格朗日、凸优化)等主题,而重在展现机器学习的实际应用,以及各知识点的落地。在写作方式和内容编写等方面,本书力求既贴近工程实践又不失理论深度,给读者良好的阅读体验。
品牌:机械工业出版社
上架时间:2020-11-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
张春强 张和平 唐振
同类热门书
最新上架
- 会员本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字
- 会员随着ChatGPT等大语言模型的迅速发展,大语言模型已经成为人工智能领域发展的快车道,不同领域涌现出各种强大的新模型。开发者想要独立构建、部署符合自身需求的大语言模型,需要理解大语言模型的实现框架和基本原理。本书梳理大语言模型的发展,首先介绍Transformer模型的基本原理、结构和模块及在NLP任务中的应用;然后介绍由只编码(Encoder-Only)到只解码(Decoder-Only)的技术计算机6.6万字
- 会员这是一本系统梳理并深入解析大模型的基础理论、算法实现、数据构造流程、模型微调方法、偏好对齐方法的著作,也是一本能手把手教你构建角色扮演、信息抽取、知识问答、AIAgent等各种强大的应用程序的著作。本书得到了零一万物、面壁智能、通义千问、百姓AI、澜舟科技等国内主流大模型团队的负责人的高度评价和鼎力推荐。具体地,通过本书你能了解或掌握以下知识:(1)大型语言模型的基础理论,包括常见的模型架构、领计算机11.2万字
- 会员本书向数据科学家、数据工程师、架构师和业务分析师展示了如何使用领先的图数据库模型TigerGraph,目标是向读者介绍图数据结构、图分析和图机器学习的概念、技术和工具。三位作者介绍了涵盖多种当代业务需求的真实使用案例。读者将探索从互联数据中获取价值的三阶段方法:连接、分析和学习。几乎每章的开头都列出了对应的三个方面的目标:学习图分析和机器学习的概念;用图分析解决特定问题;了解如何使用GSQL查询语计算机12.5万字
同类书籍最近更新